
TOOLSET FOR TEST AND VERIFICATION OF IP-BLOCKS WITH

SPACEWIRE INTERFACE

Session: SpaceWire Test and Verification

Short Paper

Elena Suvorova

St. Petersburg State University of Aerospace Instrumentation

67, Bolshaya Morskaya st. 190 000, St. Petersburg RUSSIA

E-mail: suvorova@aanet.ru,

ABSTRACT
Toolset for test and verification of RTL, post-synthesis and post-implementation
models is usually based on BFM. The BFM (Base Formal Model) typically is used for
testing and verification of interfaces that correspond to different standards. (Other
term BFM – Base Functional Model is typically system level model of a particular
device or IP-block). A toolset obligatory includes also generators of test sequences (or
a prepared set of test sequences) and modules for monitoring and processing of test
results. Often the toolset also includes an expanded set of components for simulation
and performance estimation of the device in context of a real system. This expanded
set could include switches, memory blocks and other devices. We suggest to use this
approach for SpaceWire toolset development. We specify the SpaceWire BFM as a
multilayer structure, every layer of which corresponds to a layer of the SpaceWire
standard. It allows to use the BFM for test and verification of SpaceWire controllers
with support of different SpaceWire layers and at different stages of design. For
example, if we plan to test IP-block, that includes layers from character to packet we
will use only corresponding layers of a BFM in test shell. In many cases the detailed
test of physical level is very important problem for SpaceWire product designers.
BFM includes physical level also.

The important task of coordination between test tools and tested device or IP-block
settings is considered.

1 BFM STRUCTURE
Suggested BFM of SpaceWire is multilevel structure. Levels of BFM correspond to
layers of SpaceWire standard. All levels of BFM exclude signal and physical are
described on SystemC. These two down layers could be described on SystemC,
VHDL or Verilog (dependently on design tools used for simulation, and on Unit
Under Test (UUT) description language)

Let's consider the BFM structure. Figure 1 illustrated information flows between
levels of model.

Main information flows defined in
SpaceWire standard are shown by
grey arrows. One function of BFM
is verification of UUT behavior
when external errors appear.
Therefore BFM include error
situation generation possibilities.
Suggested BFM allow generation
errors of exchange, symbol and
signal level.

The exchange level of BFM
includes features for data flow
control errors generation. It could
send to channel Nchar symbols that
are not credit. The BFM allow
sending to channel FCT symbols
that credit more than 56 Nchars.
Also BFM allow sending to
channel different symbols
independently from current state of
state machine. For example it

allows to send Nchar symbols in states ErrorWait, Ready, Started, Connecting.

Possibility of modifying (inversion) of any bits of symbols exists on symbol level
BFM (after generation of true bit representation for the symbol).

On signal level BFM allow change values of D and S lines in any time moments. As
result we can simulate situations when signals D and S changed together or when time
interval between D and S change is very short.

These possibilities allow testing system behavior in case of different types of external
faults and noise. On figure 1 the control flows for error generation are marked by red
arrows.

Information exchange between neighbor levels of BFM is going via access points that
are logical ports. Logical port is a class that includes set of methods for information
exchange. For example let's consider interconnection between packet level and
exchange level. This interconnection includes three access points for transmission to
exchange level: for data and end packet symbols, for control symbols (time, interrupt
and acknowledge codes), for interconnection management. The access point (logical
port) for control codes transmission includes next methods:
int send_Ccode(t_code Ccode_);
bool ready_to_send_Ccode();
t_code receive_Ccode();
bool received_Ccode();
The test generator and results controller could be connected to different levels of BFM
dependently on set of SpaceWire layers includes in UUT. Also different levels of
BFM could be connected to corresponding levels of UUT. The special wrappers are
used between BFM and UUT interface because the interface of UUT is specified in
terms of signals (class sc_signal).

Physical layer

Signal layer

Exchange layer

Packet layer

character
 character

type character character
type

Nchar,
EP

Nchar,
EPccode ccode

v

Packet
(header+cargo)

Packet
(header+cargo)

Network layer

Packet
cargo

Packet
cargo +

destination
identifier

Errors

Direct D, S forcing

Symbol layer

Bit stream Bit stream

Additional symbol
generation

Bit error generation

Manage_con
nection

Connecti
on state

Figure 1. – The information flows in BFM model

2 THE STRUCTURE OF SUGGESTED TOOLSET
In this article we suggest method and toolset for test and verification of IP-blocks and
devices that includes SpaceWire controllers some levels of protocol SpaceWire. One
of important tasks for test development is control of UUT regime. For example we
need test UUT in link start and auto start regimes, change transmission rate. If UUT
includes network layer, then we need manage routing table. Correspondingly
suggested test tools include not only BFM, test generators, test controllers and
wrappers, but also special components for UUT configuration. Configuration process
is typically specific for every concrete type of devices or IP-blocks. Interfaces for IP-
block configuration could be differ for different blocks. Also the time between writing
of new setting and real change could be varied essentially. We divide all UUT to two
groups. First group includes UUT that are fully configurable via external interface.
For example into this group included coder-decoder SpaceWire IP-block and
SpaceWire controller IP-block for systems with internal processor.

For such UUT configuration our toolset include special component that allows
transfer of configuration information via typical parallel synchronous memory
interface. This component also includes functions for translation to/from signal based
interface. Then user could describe wrapper from this interface to interface of his IP-
block on any hardware description language. The example of test shell for such IP-
blocks based on suggested toolset is represented on figure 2. On this figure
components from suggested toolset are green.

UUT (IP-block
SpaceWire controller)

SpW interface
Specific
interface

SpW BFM
Test controller

Test generator

wrapper

memory interface

Figure 2. – The example of test shell structure for IP-blocks

Additionally toolset includes two special interface components. First of them intends
for connecting to coder/decoder SpaceWire with typical interface represented on
figure 19 of SpaceWire standard [1]. Second interface component includes two sub
interfaces FIFO for data packets sending and receiving. The data line width is
parameterized (number of bit lines s 2n). Data packets are aligned to words
boundaries. Interface includes byte valid lines. This special interface also includes sub
interface parallel synchronous memory interface for working with state and regime
registers. The control codes also could be sending and receiving via this interface.

Second group includes devices (UUT) with internal processor or automata. For these
devices coordination between internal settings and test program in test shell typically
is very difficult.

These devices could be divided to two subgroups. First subgroup includes devices
configured only via SpaceWire interface. Second subgroup includes devices that
could be controlled via other interface, for example interface with external memory.

In this article we consider possible decision of configuration problem for UUT with
internal processor. The test program could be loaded to such UUT. But in this case
appear the problem of synchronization between test program in UUT and test program
in test shell. Therefore we suggest other approach. In frame of this approach the
control of testing process is made by test program placed in test shell. This program
when need could observe state of UUT and set regime of UUT with using of special
commands. These commands are written one by one to fixed addresses of external
memory model that accessible by internal processor of UUT. The simple program
(written on C) that read and executes these commands is loaded to UUT. The interface
component of test shell implement monitoring of reading commands by UUT and
define time moments when next command could be written to memory. The program
loaded to UUT is universal, for porting it to other device we need only correct base
address of external memory. This scheme provides small time interval between start
settings and activation new regime. This feature remove problem of synchronization
between test program in test shell and test program in UUT.

Usually for connection of external memory is used parallel synchronous or
asynchronous memory interface or sequential interfaces such as I2C, SPI or USB.
Correspondingly suggested toolset includes components for interconnection external
memory via these interfaces.

The example of test shell based on suggested toolset for device with internal processor
is represented on figure 3.

Figure 3. – The example of test shell for device with internal processor.

Thus suggested toolset includes next components: SpaceWire BFM, test generators
and test controllers and wrappers for all levels of BFM, model of external memory
and interface components for control of UUT regimes.

3 CONCLUSION
Suggested toolset could be user for test and verification of SpaceWire controllers IP-
blocks that support different levels of protocol, of devices includes support some
levels of protocol, for example, SpaceWire switches, special processors includes
SpaceWire controllers.

4 REFERENCES
1. ECSS E50 12A, “SpaceWire. Links, nodes, routers and networks”, 24 January

2003

